首页,宏海国际娱乐,首页单主驱控制器、辅件三合一控制器(集成:EHPS控制器+ACM控制器+DCDC)、辅件五合一控制器(集成:EHPS控制器+ACM控制器+DCDC+PDU+双源EPS控制器)、乘用车控制器(集成:主驱+DCDC)、物流车三合一控制器(集成:主驱+DCDC+PDU)、物流车五合一控制器(集成:主驱+EHPS控制器+ACM控制器+DCDC+PDU)。
电机控制器基本功能:通过逆变桥调制输出正玄波来驱动电机,多合一的控制器包括
复杂工况仿真:额定、过载典型工况仿真、堵转特殊工况仿真、周期性负载、非线性负载确定控制器最大的能力。
从开关损耗角度降低,研究了载频动态调整技术。通过仿真试验发现,调整开关频率后,控制器效率最大可以提升2%左右,使用动态载频率技术,尤其是在低转速,对载频要求不那么高的时候,调整载频可以有效降低控制器的损耗,提供控制器的效率,初步预计每100公里可以提供1.5公里左右,载频不能无限制下调,还需要考虑整车噪音和电机控制的需要。
不连续发波的技术应用,采用DPWM技术比COWM技术减少1/3的开关次数,可以显著降低开关次数,达到减少开关损耗的目的。
当调制比M>
0.816,CPWM和DPWM调制下的谐波近似相同。此区域可采用DPWM技术以降低器件损耗。
控制器损耗包括开关损耗和导动损耗。导动损耗与输出电流有很大关系,输出功率一定的情况下,输出电流降低对应输出电压需要相应提高。
通过加入过调制,能有效提高弱磁区输出功率和输出转矩,提高输出电压4%,峰值功率对应提高4%左右,改善整车在高速的动力性能;
通过加入过调制,输出相同功率,电流会明显降低,能减小系统发热,提高控制器的过载能力,改善整车动力性能;
通过加入过调制,能有效提高基波电压,与没有过调制相比,可以有效提高电机效率,电机电流能明显减小(0~8%),效率提高可以有效延长续航里程。
HSM电机混合同步电机,相比IPM电机可以兼顾低速区效率和高速区效率。HSM尤其在中高速恒功率运行区域内,效率优势更加明显。试验发现在低速区、高速区,HSM效率高于常规IPM电机,总体来看使用HSM技术之后可以提高电机效率。
考虑整车工况的综合能效定向优化技术,通过调整电机各损耗分量比例,实现效率的定向优化,结合具体车型路况信息,定制化开发综合能效更高的电机,提高续航里程。
做了很多热仿真,得到了控制器的最大能力,最大能力未必能保护好电机控制器,现实工况很复杂。
结温是判定IGBT处于安全运行的重要条件,IGBT的工作结温限制着控制器的最大输出能力。
IGBT过热损坏影响严重,有很多方面因素,例如设计因素、复杂工况、高震动、温度冲击,硅脂的老化,依据NTC进行IGBT结温的间接保护,存在一定的局限性,在堵转等极端工况下,热能分布很不均匀、IGBT与NTC存在温差,且NTC与结温的关系不是很明确,需要前期试验摸索,NTC响应时间慢,不能准确及时反映结温波动状态。易引起IGBT过热损坏,传统使用NTC进行IGBT结温简介保护,存在局限性。
根据工作参数,如电压电流频率,做精确的热仿真,提取热流参数,计算校正,提前预估IGBT结温。经过测试、仿真与软件模型互相校验,最终结温估算误差±3℃以内。
温度采样二极管直接集成在IGBT中间,相对于传统模块可以直接采集到晶元结温(近似),提高模块能力、能够得到晶元的结温波动,提高可靠性,保证寿命,缺点在于直接采集晶元结温,高低压的安规问题。
模块6路结温采样,模块及外部电路成本增高,目前采用1各IGBT结的温度,单路二极管的温度,通过损耗计算,热流参数计算,推导出其他几路IGBT的温度。
采用单路二极管温度采样,利用先进的损耗计算及热流参数计算方法、测试、仿真与软件模型互相校验,结温估算误差稳态可达3℃以内,瞬态10℃以内。
设置结温限制,当结温有风险时,进行降载频或者降转矩策略;风险解除,降频或者转矩数据回升。
力矩安全通过:SBC+MCU监控架构、高压备份电源、安全相关驱动芯片、IGBT故障的全面诊断、独立安全关断路径、独立ADC通道的旋变信号解码、不同质两路高压采样电路、不同质三相电流霍尔传感器等实现。
现在二代产品可能能做到class3、class4,以后EMC要做到class5,要求措施要做到小型化,成本更低。EMC核心突破创新定位在:以更优的滤波方案,更低成本的EMC器件成本达到高等级EMC要求。如EMC要求达到class5,体积占比小于5%,成本小于50RMB。
发展研究内容包括:“电控+电机”系统EMC解决方案,核心器件EMC特性研究及解决方案,“电控+电机”系统EMC仿真平台。
主要针对乘用车,目前电压普遍300-400V左右,以后可能往高压化发展,超级快速充电和功率需求提升是电动汽车高压化的内在驱动力。如充电电压从400V提升至800V,充电时间可以缩短一半。这一块必须提升,电动汽车未来才个普及,高压化是发展的一个趋势,对应这个趋势,逆变器的设计会从650V IGBT的设计往更高的750V以及1200V IGBT的方向发展。