全站搜索
首页_奇亿注册_平台
首页_奇亿注册_平台
欧亿娱乐-安全吗
作者:管理员    发布于:2023-06-12 18:10    文字:【】【】【

  欧亿娱乐-安全吗6大类型!5大趋势!探索新能源发展最后1公里新型储能技术的现状与未来

  在2060年前实现碳中和的背景下,光伏、风电等新能源必将处于快速发展期,而风电、光伏等新能源天然具有随机性、间歇性和波动性,且对电力系统的调节能力提出了更高要求。在未来,作为光伏、风电等新能源重要支撑环节的新储能产业有望开启更大市场空间。

  风电、光伏虽然是未来大力发展的新型能源,但在不少地方还是出现严重的“弃光、弃风”现象,此时电力的合理储存便是关键,既可以避免能源的不必要浪费,又可以实现对电力系统的稳定调配。

  虽然我国的新能源发电近年来取得了较快的发展,但是截至2021年,我国新能源发电占比却只有11%左右。所以,为了进一步提高新能源发电的占比,与之配套的储能技术便是重中之重了。只有当新型储能系统的成本越来越低、部署越来越灵活的时候,新能源发电才算真正意义上的普及。

  电力系统是我国当前最主要的碳排放源之一。未来电力系统建设的目标就是构建以新能源为主体的新型电力系统,风电、光伏、水电、核电等无碳能源将逐步取代化石能源成为发电的主力。截至2021年底,我国电力总装机23.8亿千瓦,其中风电光伏装机分别为3.3亿千瓦以及3.1亿千瓦,火电装机(含生物质)约13亿千瓦。根据对人口变化、GDP增长、电源装机结构转变及电能替代、人均用电量增加等因素的综合预测,我们预计至2030年,我国电力装机规模将达36亿千瓦,其中风电8亿千瓦,光伏10亿千瓦,占比约50%。至2060年,我国电力装机规模将达90~95亿千瓦,其中风电33亿千瓦,光伏42亿千瓦,占比超过80%。

  风电、光伏在为我们带来绿色低碳电力的同时,天然具有随机性、间歇性和波动性,对电力系统的调节能力提出了更高要求。通常用净负荷(用电负荷减去风光出力后的净值)的波动性特征参数(幅值、频率、变化速率)计算电力系统对调节能力的需求。图2为美国加州电力系统净负荷随新能源渗透率增加所呈现的变化。由图可见,随中午光伏出力增加,净负荷降低,而随着傍晚太阳落山,净负荷需求迅速攀升,这就要求电力系统具备午间降低出力、傍晚迅速提升出力的日内调节能力。而随着新能源占比增加,需要调节的功率变化幅度越来越大。

  除上述日内调节,净负荷在短时(秒至分钟)、长时(小时到日)和超长时(周、月、年)几个不同时间尺度的波动特性各异,对电网调节而言,分别对应着调频、日内调峰和季节性调峰等场景。在电力系统新能源装机占比不断上升的同时,火电、核电等可靠性电源占比却逐步降低,叠加极端气候对水电出力的影响,大大削弱供给侧响应与调节能力。此外,煤电、核电的长时间深度负荷调节可能对机组运行安全带来风险,也会增加额外的煤耗与碳排放。这些额外的供给侧负荷调节需求必须依靠清洁高效的储能装机弥补。除满足调节能力需求外,储能对于电网的电力传输与安全,还能起到减缓电网阻塞,提供备用和黑启动等作用。对于发电侧,储能能够起到平滑新能源波动、提高新能源消纳的作用。而负荷侧的储能装机,能够大大提升负荷侧的自我平衡能力和响应能力。

  未来,我国电力系统的特征是以风、光、水、核作为主力电源,配合足量的储能装机提供调节能力,以最小化原则保留化石能源装机作为部分基荷和保底调节,配合强大的电网传输调度能力和智能高效的负荷侧响应能力,具备安全可靠、清洁高效、灵活强韧等几个特点的全新电力系统。储能在新型电力系统中将起到不可或缺的重要作用。

  在各类储能技术当中,抽水蓄能技术成熟可靠、全生命周期储能成本低,是当前储能装机中的主力。截至2021年底,我国已投运的约4600万千瓦储能装机中,抽水蓄能约为3700万千瓦,已开工建设的抽水蓄能电站超过6000万千瓦。尽管如此,抽水蓄能电站存在厂址选择不灵活、建设投资规模大、建设周期长等缺点或限制,难以通过技术手段解决。仅靠抽水蓄能,既无法满足近几年新能源装机快速上涨所要求的储能装机,也无法满足未来电力系统对储能灵活的时空配置和多元化技术参数的要求。这给了各类“新型储能”足够的发展空间。我们认为,经过“十四五”和“十五五”期间的充分培育与发展,未来的新型电力系统之中,成熟的“新型储能”技术将与抽水蓄能“并驾齐驱”,在源-网-荷的各类应用场景下发挥重要的系统调节和安全保障作用。

  新型储能所包括的技术类型众多,具体来讲包括但不限于以下几类:压缩空气储能、重力储能、液流电池储能、锂/钠离子电池储能、氢储能等。

  由于锂离子电池发展相对较为成熟,本文主要针对锂离子电池的储能技术进行分析。和锂离子电池技术路线相近的钠离子电池,具有理论成本低、特性与锂离子电池相近、安全性好等优点,适合在对成本要求苛刻的应用场景下替代成本较高的锂离子电池。

  结合这几年新能源发展的主要技术路径,目前主要的化学储能方式主要是锂电池,锂电池的产业链主要由上游原材料,中游电芯模组厂商和下游应用领域组成。

  上游锂离子电池产业原材料主要包括基础原材料(包括锂矿、镍矿、钴矿、锰矿、铁矿等金属资源以及石墨矿、硅、磷酸盐等非金属原材料),当然也包括基于基础原材料生产出来的电池原材料(主要包括正极、负极、隔膜以及电解液等,被称为锂电的“四大原材料”)。

  中游锂离子电池产业为电芯模组厂商,使用上游电池材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品,然后根据终端客户要求选择不同的锂离子电芯、模组和电池管理系统方案。

  下游锂离子电池产业主要应用于动力领域(电动工具、电动自行车和新能源汽车等)、消费电子产品(手机、笔记本电脑等电子数码产品)和储能领域等。

  截至2021年底,全球已投运储能项目装机规模约2.1亿千瓦,同比增长9%。其中,抽水蓄能装机规模约1.8亿千瓦,占比首次低于90%。新型储能累计装机规模3000万千瓦,同比增长67.7%,其中锂离子电池装机约2300万千瓦,占据主导地位。在3000万千瓦的新型储能装机中,美国是装机量最大的国家,约650万千瓦,中国紧随其后,装机量约580万千瓦。其他新型储能装机较多的国家包括韩国、英国、德国、澳大利亚和日本。

  我国截至2021年底,电力储能装机约4600万千瓦,相比于2020年增长30%,占全球电力系统储能装机量的22%。2021年全年新增电力储能装机约1000万千瓦,其中抽水蓄能增加约800万千瓦,新型储能装机增加约200万千瓦。在新型储能的580万装机中,锂离子电池占比最高,接近90%,折合装机规模约520万千瓦。其余新型储能中,铅蓄电池和压缩空气储能占比相对较大。从各省已投运新型储能装机情况看,江苏省装机量第一,已超过100万千瓦,广东省和山东省次之,其余有较大装机的省份包括青海、内蒙古、湖南、安徽等。

  新型储能所包括的技术类型众多,按照能量存储方式不同主要分为机械储能、电磁储能、电化学储能、化学储能和储热等几大类。每大类技术当中又有多种完全不同的技术路线。根据放电时长,可将其分为功率型电储能、能量型电储能以及储热(冷)技术。本文主要总结和对比各类能量型电储能技术的主要技术经济性参数和发展现状,且由于锂离子电池发展相对较为成熟,相关参考资料较多,故本文重点介绍压缩空气储能、重力储能、液流电池储能、钠离子电池储能、氢储能等五种侧重于能量型应用的储能技术,对其技术原理、技术特点、关键技术指标、经济性潜力、应用前景进行了详细梳理分析。

  技术原理:压缩空气储能(Compressed Air Energy Storage,简称 CAES),是机械储能的一种形式。在电网低谷时,利用富余的电能,带动压缩机生产高压空气,并将高压空气存入储气室中,电能转化为空气的压力势能;当电网高峰或用户需求电能时,空气从储气室释放,然后进入膨胀机中对外输出轴功,从而带动发电机发电,又将空气的压力势能转化为电能。CAES储能系统中的高压空气在进入膨胀机做功前,需要对高压空气进行加热,以提高功率密度。根据加热的热源不同,可以分为燃烧燃料的压缩空气储能系统(即补燃式传统压缩空气储能)、带储热的压缩空气储能系统和无热源的压缩空气储能系统。

  先进绝热压缩空气储能系统(AA-CAES)在传统CAES系统的基础上,引入蓄热技术,利用蓄热介质回收压缩阶段产生的压缩热,并将高温蓄热介质储存起来,在释能阶段时高温蓄热介质通过换热器对高压空气进行预热。蓄热系统代替了燃烧室的补充燃烧来加热空气,从而达到减小系统能量损失、提高效率的目的。此外,有些AA-CAES系统采用液态压缩空气存储在储罐中的形式,摆脱了自然条件的限制。

  压缩空气储能技术在本报告所讨论的新型储能技术中属于相对进展较快、技术较为成熟的技术,已进入100MW级示范项目阶段。早期压缩空气储能系统依赖燃气补燃和自然储气洞穴,但目前已无需补燃,并可以应用人造储气空间。压缩空气储能技术与燃机技术同宗同源,主要痛点在于设备制造和性能提升。大型压气设备、膨胀设备、蓄热设备、储罐等设备的性能提升是效率、经济性和可靠性提升的关键。十四五期间压缩空气储能系统效率有望提升至65%~70%,系统成本降至1000~1500元/kW·h。“十五五”末及之后系统效率有望达70%及以上,系统成本降至800~1000元/kW·h。

  技术优劣势:压缩空气储能系统具有容量大、工作时间长、经济性能好、充放电循环多等优点。压缩空气储能系统适合建造大型储能电站(100MW),放电时长可达4小时以上,适合作为长时储能系统。压缩空气储能系统的寿命很长,可以储/释能上万次,寿命可达40年以上;并且其效率最高可以达到70%左右。压缩空气储能技术与蒸汽轮机、燃气轮机系统同宗同源,技术通用性强,设备开发基础较好,建造成本和运行成本容易控制,具有很好的经济性。

  产业链及成本:压缩空气储能的上游主要是原材料与核心部件(模具、铸件、管道、阀门、储罐等)的生产加工、装配、制造行业,属于机械工业的一部分,但涉及压缩空气储能本身特性和性能要求,对基础部件的设计、加工要求较为严格。中游主要是关键设备(压缩机、膨胀机、燃烧室、储热/换热器等)设计制造、系统集成控制相关的行业,属于技术密集型的高端制造业,具有多学科、技术交叉等特性。下游主要是用户对压缩空气储能系统的使用和需求,涉及常规电力输配送、可再生能源大规模接入、分布式能源系统、智能电网与能源互联网等多个行业领域。

  现阶段百兆瓦级压缩空气储能功率成本约为4000-6000元/kW,能量成本约为1000-2500元/kWh,循环效率可达65-70%,运行寿命约为40-60年。压缩空气系统初投资成本主要包括系统设备、土地费用和基建等。系统设备包括了压缩机机组、膨胀机机组、蓄热系统(换热器、蓄热器、蓄热介质、管道)、电气及控制设备、储气室等。

  液流电池具有容量大、安全性好、功率与容量解耦等优点,适合作为大规模长时储能的选择。全钒液流电池是目前最为成熟的液流电池体系,钒的多价态特性使得其面临的技术问题最少,技术最为成熟。但主要活性物质钒的成本占系统成本比例高,限制了其造价的下降。全钒液流电池目前国内进展较快,5MW/10MWh项目已安全稳定运行8年以上。200MW/800MWh项目已进入调试阶段。其他形式液流电池目前多处于kW~MW级别的示范阶段。

  全钒液流电池成本目前在2500~3500元/kWh 区间。若考虑钒电解液残值占原值的70%,以及8小时以上的长时储能,价格有望下降至800-1400元/kWh。但近一年来,五氧化二钒价格大幅上涨,使得其成本压力大增。锌基、铁基等体系具有活性物质储量大、价格低的特点。但面临的工艺问题,科研问题较多,相对全钒电池来讲技术更为复杂,需要更长的时间进行研发示范。

  从理论上讲,离子价态变化的离子对可以组成多种氧化还原液流电池。根据液流形式分类,液流电池可分为双液流电池和单液流电池。根据沉积和相变与否,可分为沉积型电池和不沉积型电池。根据活性材料分类,可分为全钒液流电池,锌基液流电池(锌溴、锌铁、锌镍、锌空气等),铁铬液流电池、全铁液流电池等等。相比全钒液流电池,其他液流电池技术成熟度稍低,仍然面临活性物质的沉积、电解液互窜、功率密度低、容量和能量无法完全解耦、析氢和析氧等问题。

  五氧化二钒和隔膜占据了原料成本的60~80%。且随着储能时长增长,五氧化二钒成本所占比例逐渐增加。五氧化二钒市场目前是典型的现货市场,短期钒价波动会直接影响全钒液流电池造价,因此,相对稳定的钒价有利于液流电池行业的成本控制。虽然全钒液流电池初始投入成本相对较高,但是全钒液流电池的电解液性能衰减较慢,通过在线或离线再生后可循环使用,且电解液中钒的价值长期存在(残值相对较高),其可循环利用和残值率较高的特性对于初始投入成本分摊和后续年度运维成本等具有一定优势。

  钠离子电池具有理论成本低、特性与锂离子电池相近、安全性好等优点,适合在对成本要求苛刻的应用场景下替代成本较高的锂离子电池。钠离子电池的正负极材料所需资源在地壳储量丰富,分布均匀,且开采更加经济环保,被业界认为是比锂离子电池更具经济性的电池技术。目前钠离子电池技术主要分为三条路线,即层状过渡金属钠离子氧化物、普鲁士蓝、聚阴离子类钠离子化合物,三条路线均由行业龙头企业布局,均处于实验室向大规模产业化转化的阶段。目前我国在钠离子电池领域处于世界领先地位,中科海钠、宁德时代、立方新能源等企业均已实现钠离子电池的初步量产,并推出了成熟的产品线。

  性能参数方面,各领先钠离子电池生产商所开发产品的能量密度已超过140Wh/kg,仍在向锂离子电池当前水平靠近。在碳酸锂价格(当前价格50万元 /吨)居高不下的今天,碳酸钠的价格始终维持在2000元/吨,电芯成本保持在0.4~0.5元/Wh,行业估计钠离子电池最终成本将比锂离子电池低20~40%。钠离子电池在实验室环境下展现出了较高的安全性能,同时与锂离子电池工艺兼容,现有生产厂商转型更加容易。

  正极材料成本在电芯成本中占主导地位,参考2022年上半年数据,铜铁锰层状氧化物估计成本约为2.9万元/吨,镍铁锰层状氧化物约为4.2万元/吨,普鲁士白类为2.2~2.6万元/吨。负极材料硬碳依据厂商供应链资源价格差别较大,在10~20万元/吨不等,目前诸多厂商宣称硬碳成本有较大下降空间。电解液成本同样也是电池成本的重要组成部分,钠离子电池电解质盐一般为六氟磷酸钠,参考目前碳酸钠0.3万元/吨的成本,电解液成本预计低于2万元/吨。钠离子电池正负极均可以使用铝箔作为集流体,目前价格在3~4万元/吨。

  固体介质的重力储能是近期重力储能商业化的主要发展方向,水介质的新型重力储能技术尚停留在理论研究阶段,除传统抽蓄外的新型水介质重力储能目前尚未有商业化的产品。Energy Vault采用的提升砌块作为存储电能的方式已掌握较为成熟的技术,并已开始应用于小规模示范项目中,但尚未出现大规模应用,其技术成熟度有待示范项目的验证。若能有较成功的示范,砌块重力储能具有可扩展性高、度电成本较低的优势,在中长时储能中有相对广阔的应用前景。矿井重力储能利用废弃矿井进行能量存储,矿井高差通常比人工构筑物更大,如果将数百米深的废弃矿井利用部署重力储能,其储能效率和储能密度均能够超越以人工构筑高差部署重力储能的方式。

  技术原理。氢储能属于化学储能,化学储能利用电能将低能物质转化为高能物质进行存储,从而实现储能。目前,常见的化学储能主要包括氢储能和将氢进一步合成燃料(甲烷、甲醇等)储能。这些储能载体本身是可以直接利用的燃料,因此,化学储能与前述其他电储能技术(输入、输出均为电能)存在明显区别:如果终端可以直接利用氢、甲烷等物质,如氢燃料电池汽车、热电联供、化工生产等。长远看,可以这些储能载体性质稳定的特点,在需要时将其转化为电力系统的电能。目前,在化学储能技术中,氢储能相对成熟,依托电解水制氢设备和氢燃料电池(或掺氢燃气轮机)实现电能和氢能的相互转化。储能时,利用富余电能电解水制氢并存储,释能时,用氢燃料电池或氢发电机发电。

  氢储能需要完成电—氢—电的转换,涉及“制、储、运、用”四个环节,整个过程较为复杂。在制氢环节,电制氢技术包括碱性水电解(ALK)、质子交换膜水电解(PEM)、阴离子交换膜水电解(AEM)以及固体氧化物水电解(SOEC)四种。前三种为常温(60~90℃)电解槽,SOEC为高温(600~1000℃)电解槽。碱性电解槽利用在水中加入的碱性电解质增加水的导电性,提高电解效率。其结构简单、技术成熟、价格便宜,是目前主流的电解水制氢方法,缺点是效率较低,电解槽效率约为75%,系统效率为60~70%,同时受限于隔膜机械强度,功率灵活调节速度有限。质子交换膜技术利用质子交换膜代替了原有的隔膜和电解质,由于质子交换膜薄且质子迁移速度快,能够明显减小电解槽的体积和电阻,使电解槽效率达到80%左右。

  由于目前质子交换膜价格较高,且被水浸润时酸性较强,电极只能采用耐酸的铂等贵金属,因此质子交换膜电解制氢成本相对昂贵。阴离子交换膜电解槽结构与质子交换膜电解槽类似,主要结构由阴离子交换膜和两个过渡金属催化电极组成,一般采用纯水或低浓度碱性溶液用作电解质。阴离子膜交换膜是AEM电解水系统中的重要组成部分,也是该技术与PEM技术最大的区别,其作用是将阴离子OH−从阴极传导到阳极,同时阻隔气体和电子在电极间直接传递。固体氧化物电解槽技术利用固体氧化物作为电解质,在高温(600~1000℃)环境下,让水蒸气通过多孔的阴极,氢离子获得电子后成为氢气,氧离子通过固体氧化物在阳极失去电子成为氧气。由于高温环境下离子活性增强,因此其电解效率最高,可以达到90%。该方法还处于试验研究阶段。

  此外,还可以将绿氢通过合成氨工艺或氢制甲醇工艺转化为氨或甲醇进行储存,使用时再通过氨催化裂解和甲醇催化裂解制氢,或直接将氨、甲醇进行应用。液氨的沸点为-33.5℃,甲醇的沸点为-64.8℃,因此液化及储存成本远低于氢,另一方面氨和甲烷的合成及裂解技术成熟,只需针对可再生能源制氢工艺进行部分优化调整。更重要的是,合成甲醇所用二氧化碳可通过碳捕集技术(CCUS)获得,实现生产过程“负碳排”,在减碳角度具有较大优势。

  氢发电技术主要包括氢发电机和氢燃料电池两种。氢发电机主要以氢气(或与天然气的混合气)为燃料,利用内燃机原理,经过吸气、压缩、燃烧、排气过程,带动发电机产生电流输出。氢燃料电池是利用电解水的逆反应,把氢的化学能通过电化学反应直接转化为电能的发电装置。相比而言,燃料电池发电效率更高、噪声小、没有污染物排放且容易实现小型化,发展前景更加广阔。

  氢燃料电池主要分为碱性燃料电池、质子交换膜燃料电池、固体氧化物燃料电池等类型。碱性燃料电池(AFC)是燃料电池系统中最早开发并获得成功应用的一种,通常以氢氧化钾作为电解质,多用于宇宙探测飞行等特殊用途的动力电源。质子交换膜燃料电池由质子交换膜、电催化剂、气体扩散层、双极板等部分组成,具有工作温度低、启动快、功率密度高等优势,是目前发展最快、在氢能汽车和氢能发电领域应用最广的燃料电池。固体氧化物燃料电池属于高温燃料电池,具有全固态电池结构,其综合效率高,对燃料的适应性广,适用于热电联供,目前研究的焦点在于电池结构的优化和制备技术的改进。

  化学储能与前述其他电储能技术存在明显区别:如果终端可以直接利用氢、甲烷等物质,如氢燃料电池汽车、热电联供、化工生产等,这些储能载体不必再转化为电力系统的电能,可以提高整体用能效率。若必须将氢、氨、甲烷再转化为电能,由于工艺链条较长,其能量利用效率较低,固定投资高,经济性较其他储能手段较差。

  化学储能更适合发电侧长周期、大容量过剩的应用场景,例如在水电的丰水期,大规模光伏项目的发电高峰等。由于可以持续将电能转化为氢、氨和甲醇等物质,在运输能力相匹配的前提下,化学储能在储能功率和储能容量上都有极为明显优势。氢或其他合成燃料是具有实体的物质,相对于直接储电,存储更容易实现。例如,氢的单位质量热值高达1.4×108J/kg,储氢能量密度高,能够实现大规模储能。化学储能的缺点是电-电转换效率低,储运设备成本高,并且氢、甲烷等燃料属于易燃易爆品,存储过程存在一定的安全隐患。化学储能涉及制取、储存、发电三个环节,以氢储能为例,主要包括电制氢、氢储运和氢发电。

  氢储运成本主要受存储方式、运输方式和运输距离等因素影响。气态储氢(3~35MPa)单次成本为2~3元/kg,液态储氢单次成本为20~25元/kg,合成氨储氢单次成本为6~8元/kg。公路运输高压气态氢成本每吨为80~100元/km, 公路运输高压气态氢成本每吨为10~15元/km 海运液氢成本每吨约0.5元/km。内径500mm设计压力4MPa的氢气管道输氢成本每吨约0.5~1元/km。发电单元,以质子交换膜燃料电池为例,其电堆造价为2000~4000元/KW,电堆成本约占系统总成本的60%。贵金属催化剂和全氟磺酸膜价格昂贵,是推高燃料电池造价的主要原因。降低催化剂中铂的用量、开发非贵金属催化剂及价格低廉的非氟质子交换膜是 降低成本的关键。

  技术原理:固态电池是一种以固体材料构成电极与电解质的锂离子电池技术,其工作原理与传统(液态)锂离子电池相同,均属于“摇椅式电池”范畴,既通过可逆氧化还原反应,使得锂离子在正负电极之间反复游走,实现电能的储存或释放。固态电池的正极可由碳、钛酸盐、金属锂极及其合金构成,负极可由金属氧化物、硫化 物、钒氧化物等构成,目前钠硫电池(金属钠为负极、硫为正极、β-氧化铝管为固态电 解质)技术路线最具代表性。

  技术特点:安全性能好是固态电池相对于传统(液态电解质)锂电池的最大优势,其固态电解质不可流动,热稳定性好,抗损坏能力强,在破损条件下不会产生漏液及易燃易爆气体,极大改善了锂电池所面临的安全性问题。理论能量密度高也是行业关注固态电池的重要原因。理论上,固态电解质对比液体有着 更大的材料密度,从而意味着更高的能量密度,目前固态电池的实验室数据已超过400Wh/kg,显著优于锂电池平均水平。另外凭借其电解质极佳的物理与化学稳定性,实验室条件下固态电池也展现出了低温性能好以及循环寿命长等特点。目前由于生产技术、PACK工艺、电极材料接触面导电性等方面的问题,导致达到量产标 准的固态电池能量密度尚不及成熟锂离子电池。由于产业链不成熟以及工艺复杂等原因,固态电池当前成本远超液态锂离子电池。

  无论是从政策还是扩产步伐,抑或是开年订单来看,储能都表现出了强劲的爆发力。而伴随原材料供需关系的改变、储能参与电力市场机制步入深水区、储能全新竞速关系出现,储能产业链在2023年至少出现五大“发展动向”。

  公开数据显示,2021年初至2022年底近两年时间内,电池级碳酸锂涨幅超10倍。上游核心原材料价格猛涨,储能系统涨价幅度达30%~50%。

  但2022年底以来,碳酸锂等原材料成本压力得到缓解。2022年12月至2023年2月,碳酸锂已经保持三个月连跌态势,电池级碳酸锂均价跌破45万元/吨,较去年11月上旬的最高点下跌幅度超15万元/吨,且目前价格仍在进一步下探。

  此外,2022年以来,储能电池产能布局加速,尤其280Ah电池产能得到将在2023年Q1较为集中释放。2023年,伴随碳酸锂和四大主材成本下降明显叠加储能电池产能加速释放,储能毛利率向上趋势明显。

  比亚迪全球储能负责人尹小强曾向高工储能预测到,在中国当前环境下培育出来的储能的市场竞争力会比海外更加强劲。2023年储能应该很快就爆开了。

  这个爆发除了市场,技术端竞速越来越明显。从电池端来看,2023年,储能技术极大明显动向,比亚迪刀片电池、300Ah及以上大容量电芯等具备行业竞争力的电池加速渗透到储能。

  比亚迪刀片电池是业内首款方形铝壳叠片型动力电池,通过包括针刺实验在内的全部车规级电池测试。2023年,比亚迪刀片电池版储能系统问世。比亚迪表示,这是一款专为储能而生的系统产品,能解决储能行业面临的安全、成本、寿命、效率等痛点。

  此外,大容量储能电芯已经成为储能电池重要看点之一。2022年以来,海辰储能、瑞浦兰钧、亿纬锂能、天合储能、远景动力、海基新能源等相继发布大容量储能电芯。而从各电池厂产能、技术、产品等布局态势来看,基于容量、循环次数等的竞速将在2023年进一步升华。

  从系统端来看,更安全、高效的储能系统竞速态势正在进一步演化。2022年,海博思创针对户用、储能电站及工商业等不同应用场景研发出新一代HyperSafe系列本质安全固态电池储能系统产品;阳光电源面向大型地面、工商业电站应用场景发布“三电融合”的全系列液冷储能解决方案PowerTitan、PowerStack;天合储能发布万次循环液冷系统TrinaStorage Elementa;新风光等发布高压级联储能并网产品。

  组串式、集中式、集散式、高压级联式、模块化储能系统等针对各类应用场景的系统加速竞速。2023年,伴随各类储能应用场景加速爆发,这种技术上“百家争鸣”之势将进一步加剧。

  在政策端,《朔州市“十四五”新型储能发展实施方案》开启了2023年地方储能发展纲领性文件“信号”。《朔州方案》提出,朔州市将在2025年实现新型储能从商业化初期向规模化发展转变,到2030年实现新型储能全面市场化发展。

  除了纲领性文件外,全国电力市场改革加速。2月1日,福建省能监办发布了《福建电力市场运营基本规则(试行)》。该规则规定:包括储能企业、负荷集合商、可调节负荷等在内的新兴市场主体,均可参与福建电力市场。 值得注意的是,福建电力市场分为:电力批发市场、电力零售市场,其中电力批发市场由电能量市场、辅助服务市场构成,在时机成熟时,还将开展容量市场。电力批发市场,将成为2023年储能最主要的目标市场。

  朔州的储能发展方案、福建的电力市场改革等只是一个缩影。2023年将进一步迎来储能政策细化。

  从2023年开年的扩投产来看,以储能电池和储能系统为主,且从储能电池技术类别来看,仍以锂离子电池居多,但同时也注意到液流电池和飞轮储能等新型储能技术的产业化也在逐步推进。

  从扩投产端来看,2023年以来的扩产规模均为GWh级别,亿纬锂能、盛虹集团、中航锂电、巨湾技研、双一力储能、雄韬股份、赣锋锂业、卓阳能源、库博能源等加速储能赛道竞速,其中以盛虹集团和亿纬锂能规模较大。

  盛虹集团作为跨界来的上市公司,计划在江苏张家港投资306亿建设60GWh储能电池超级工厂和新能源电池研究院。

  以亿纬锂能、盛虹股份、巨湾技研、兰钧新能源、卓阳能源等扩产为开端,全年竞争之势初成。其中盛虹集团、卓阳能源等扩产,代表着关联性企业的加速跨界;而亿纬锂能、巨湾技研、雄韬股份、赣锋锂业等扩产,意味着动力赛道企业加速延伸到储能领域。2023年,储能领域不仅在产能上进一步竞速,还意味着储能赛道竞速将进一步升级。

  从开年订单来看,储能“狂飙”信号明显。以海辰储能为例,其开年订单接连落地。开年至今,海辰储能已签订、中标超百亿订单,涉及总量超20GWh。春节假期内,海辰储能生产任务量相较同期增长5倍以上。

  同样,众企业也在开年“出海”收获颇丰。2023年开年,比亚迪储能543MWh Cube Pro液冷储能系统在拉斯维加斯地区启动部署,该项目将于2023年第二季度开始建设,预计于年底商业运营。天合储能在海外市场再次斩获超100MWh储能订单,将在英国应用液冷系统TrinaStorage Elementa。

  可以预见的是,伴随储能市场激增,储能各产业链企业将在在订单、企业合作进一步加速突破。

相关推荐
  • 天辰注册会员-VIP注册开户官网【首页】
  • 欧亿娱乐-安全吗
  • 首页「新城注册平台
  • 火星-火星注册-登录注册平台
  • 金牛娱乐平台怎么样
  • 火星注册官网首选
  • 首页_天九注册_首页
  • 主页菲娱国际娱乐-怎么提现
  • 恒悦娱乐注册#恒悦平台#主管官网
  • 首页*皇马注册*首页
  • 脚注信息
    版权所有Copyright(C)2023-2024首页_奇亿注册_平台 txt地图 HTML地图 XML地图